4729 Mechanics 2

1 (i)	$\begin{aligned} & 1 / 2 \times 75 \times 12^{2} \text { or } 1 / 2 \times 75 \times 3^{2} \text { (either KE) } \\ & 75 \times 9.8 \times 40 \quad \text { (PE) } \\ & R \times 180(\text { change in energy }=24337) \\ & 1 / 2 \times 75 \times 12^{2}=1 / 2 \times 75 \times 3^{2}+75 \times 9.8 \times 40-R \times 180 \\ & R=135 \mathrm{~N} \end{aligned}$	B1 B1 B1 M1 A1 5	M1 $12^{2}=3^{2}+2 a \times 180$ A1 $a=0.375$ (3/8) M1 $75 \times 9.8 \times \sin \theta-R=75 a$ A1 $R=135$ (max 4 for no energy)	5

2 (i)	$R=F=P / v=44000 / v=1400$ $v=31.4 \mathrm{~m} \mathrm{~s}^{-1}$	M1 A1 2	
(ii)	$44000 / v=1400+1100 \times 9.8 \times 0.05$ $v=22.7 \mathrm{~m} \mathrm{~s}^{-1}$	M1 A1 A1 3	must have g
(iii)	$22000 / 10+1100 \times 9.8 \times 0.05-1400$ $=1100 a$ $a=1.22 \mathrm{~m} \mathrm{~s}^{-2}$	M1	
	A1		

3 (i)	$\begin{aligned} & \cos \theta=5 / 13 \text { or } \sin \theta=12 / 13 \text { or } \theta=67.4^{\circ} \\ & 0.5 \times F \sin \theta=70 \times 1.4+50 \times 2.8 \\ & F=516 \mathrm{~N} \end{aligned}$	B1 M1 A1 A1 4	any one of these moments about A (ok without 70) $0.5 \sin \theta=0.4615$ SR 1 for 303 (omission of beam)
(ii)	$\begin{array}{\|ll} F \sin \theta=120+Y & \text { (resolving vertically) } \\ Y=356 & \text { ftheir } \mathrm{F} \times 12 / 13-120 \\ X=F \cos \theta & \text { (resolving horizontally) } \\ X=198 & \boldsymbol{f} \text { their } F \times 5 / 13 \\ \text { Force }=\sqrt{ }\left(356^{2}+198^{2}\right) \\ 407 \text { or } 408 \mathrm{~N} & \end{array}$	$\begin{array}{ll} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } & \\ \text { M1 } \\ \text { A1 } & \\ \hline \end{array}$	M1/A1 for moments (B) $Y \times 2.8+1.4 \times 70=2.3 \times 516.7 \times 12 / 13$ (C) $0.5 \times Y=0.9 \times 70+2.3 \times 50$ (D) $1.2 X=1.4 \times 70+2.8 \times 50$

4 (i)	$T=0.4 \times 0.6 \times 2^{2}$	M1	
	$T=0.96 \mathrm{~N}$	A1 2	
(ii)	$S-T$	B1	may be implied
	$S-T=0.1 \times 0.3 \times 2^{2}$	M1	
		A1	
	$S=1.08$	A1 4	
(iii)	$v=r \omega$	M1	
	$v_{P}=0.6$	A1	
	$v_{B}=1.2$	A1	
	$1 / 2 \times 0.1 \times 0.6^{2}+1 / 2 \times 0.4 \times 1.2^{2}$	M1	$(0.018+0.288)$ separate speeds
	0.306	A1 $\mathbf{5}$	

5 (i)	$\begin{aligned} & \begin{array}{l} t=(2 \times 6 \sin \pi / 4) / 3 \pi / 4 \\ \vec{t}=3.60 \end{array} \end{aligned}$		$\begin{array}{ll} \hline \text { M1 } \\ \text { A1 } 2 \end{array}$	must be correct formula with rads AG	
(ii)	$\begin{aligned} & đ \cos 45^{\circ}=" 2.55 " \\ & 5 \bar{x}=3 \times 3+2 \times \text { " } 2.55 " \\ & \bar{x}=2.82 \\ & 5 \bar{y}=3 \times 6+2 \times(12+" 2.55 ") \\ & \bar{y}=9.42 \end{aligned}$		B1 M1 A1 A1 M1 A1 A1 7	may be implied moments must not have areas $2 \mathrm{~kg} / 3 \mathrm{~kg}$ misread (swap) gives $\begin{aligned} & (2.73,11.13) \theta=21.7^{\circ} \\ & (\text { MR }-2)(\max 7 \text { for (ii) }+(\text { iii })) \\ & \text { SR }-1 \text { for } \bar{x}, \bar{y} \text { swap } \end{aligned}$	
(iii)	$\begin{aligned} & \tan \theta=2.82 / 8.58 \\ & \theta=18.2^{\circ} \end{aligned}$	J	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$	$\begin{aligned} & \text { M0 for their } \bar{x} / \bar{y} \\ & \text { their } \bar{x} /(18-\bar{y}) \end{aligned}$	11

7(i)	$\begin{align*} & 9=17 \cos 25^{\circ} \times t \\ & t=0.584 \quad\left(\text { or } 9 / 17 \cos 25^{\circ}\right) \\ & d=17 \sin 25^{\circ} \times 0.584+1 / 2 \times 9.8 \times 0.584^{2} \\ & =h t \text { lost }(5.87) \\ & h=2.13 \end{align*}$	M1 A1 M1 A1 A1 5	$\begin{aligned} & \text { B1 } y=x \tan \theta-4.9 x^{2} / v^{2} \cos ^{2} \theta \\ & \text { M1/A1 } y=9 \tan \left(-25^{\circ}\right)-4.9 \times 9^{2} / 17^{2} \cos ^{2} 25^{\circ} \end{aligned}$ A1 y = -5.87 2.13
(ii)	$\begin{aligned} & v_{h}=17 \cos 25^{\circ} \quad(15.4) \\ & v_{v}=17 \sin 25^{\circ}+9.8 \times 0.584 \\ & v_{v}{ }^{2}=\left(17 \sin 25^{\circ}\right)^{2}+2 \times 9.8 \times 5.87 \\ & v_{v}=12.9 \\ & \tan \theta=12.9 / 15.4 \\ & \theta=40.0^{\circ} \text { below horizontal } \end{aligned}$	B1 M1 A1 M1 A1 5	$\mathrm{M} 1 / \mathrm{A} 1 \mathrm{~d} y / \mathrm{d} x=$ $\tan \theta-9.8 x / v^{2} \cos ^{2} \theta$ A1 $\mathrm{d} y / \mathrm{d} x=-0.838$ M1 $\tan ^{-1}(-.838)$ or 50.0° to vertical
(iii)	$\begin{aligned} & \text { speed }=\sqrt{ }\left(12.9^{2}+15.4^{2}\right) \\ & \\ & 1 / 2 m v^{2}=1 / 2 m \times 20.1^{2} \times 0.7 \\ & v=16.8 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & 4 \end{array}$	(20.1) NB 0.3 instead of 0.7 gives 11.0 (M0)

